Detection of candidate tumor driver genes using a fully integrated Bayesian approach.
نویسندگان
چکیده
DNA copy number alterations (CNAs), including amplifications and deletions, can result in significant changes in gene expression and are closely related to the development and progression of many diseases, especially cancer. For example, CNA-associated expression changes in certain genes (called candidate tumor driver genes) can alter the expression levels of many downstream genes through transcription regulation and cause cancer. Identification of such candidate tumor driver genes leads to discovery of novel therapeutic targets for personalized treatment of cancers. Several approaches have been developed for this purpose by using both copy number and gene expression data. In this study, we propose a Bayesian approach to identify candidate tumor driver genes, in which the copy number and gene expression data are modeled together, and the dependency between the two data types is modeled through conditional probabilities. The proposed joint modeling approach can identify CNA and differentially expressed genes simultaneously, leading to improved detection of candidate tumor driver genes and comprehensive understanding of underlying biological processes. We evaluated the proposed method in simulation studies, and then applied to a head and neck squamous cell carcinoma data set. Both simulation studies and data application show that the joint modeling approach can significantly improve the performance in identifying candidate tumor driver genes, when compared with other existing approaches.
منابع مشابه
Driver Drowsiness Detection by Identification of Yawning and Eye Closure
Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...
متن کاملStudy of Gene Expression Signatures for the Diagnosis of Pediatric Acute Lymphoblastic Leukemia (ALL) Through Gene Expression Array Analyses
Background: Acute lymphoblastic leukemia (ALL) as the most common malignancy in children is associated with high mortality and significant relapse. Currently, the non-invasive diagnosis of pediatric ALL is a main challenge in the early detection of patients. In the present study, a systems biology approach was used through network-based analysis to identify the key candidate genes related to AL...
متن کاملIdentification of the drought tolerance involved candidate genes in foxtail millet through an integrated meta-analysis approach
Drought stress is one of the most important factors limiting production in the agricultural sector. Due to the need to use smart agriculture adapted to climate change, the use of drought-tolerant alternative plants with high water use efficiency is of great importance. Foxtail millet (Setaria italica L.) is one of the important drought tolerant fodder and food grains in semi-arid regions. In th...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملDeveloping an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects
Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 33 10 شماره
صفحات -
تاریخ انتشار 2014